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We Consider the problem of a system coupled to an ensemble of independent 
harmonic oscillators acting as a reservoir. We use an extension of the functional 
derivative technique to analyze some of the effects of adding stochastic terms to 
the system-reservoir coupling parameters. Two approaches (quantum master 
equation and Langevin equation) are considered and their ranges of validity 
and differences are examined. 
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1. I N T R O D U C T I O N  

T h e  H a m i l t o n i a n  

w i t h  (h = 1 ) 

Ho = Hs  + HB + ~HI 

H s = Ogoa~a 
N 

HB= ~ c~ 
i = 1  

N 

H , =  Z [giA~ a + g*Aia*] 
i = 1  

(1) 

(2) 
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has been the subject of much theoretical work (~ 7) and widely considered in 
the literature to describe different physical situations: interaction between 
phonon modes produced by anharmonicity of the lattice, (8) damped 
vibration of a diatomic molecule, (9) spin relaxation in nuclear magnetic 
resonance, (1~ or, in quantum optics, to describe either the interaction of a 
two-level system and radiation or the relaxation of one mode of a field 
when it interacts with the other modes. (~1 13) 

Our purpose in this work is to extend some of the results regarding the 
Hamiltonian (1) when a time-dependent stochastic term ~(t)  is added to 
the coupling constants g;. The resulting Hamiltonian is then given by 

N 

H = H o + ~  ~, {~(t)A~ia+~*(t)Ai at} (3) 

where r are complex colored Gaussian noises with zero mean value and 
correlation functions 

(~i(t) ~j(t') ) = 7o( t -  t') 
(4) 

(~(t)  ~*(t') ) = r a t -  c) 

We try to model external fluctuations acting on the whole system. An 
important example of such fluctuations in the coupling coefficients g~ 
occurs when the Hamiltonian (1) models, in the two-level approximation, 
the interaction between an atom or molecule and an electromagnetic field. 
In this case, the original Hamiltonian of the electron interacting with the 
field is 

e 
Hat + Hrad + - - r "  E (5)  

m 

When only the transitions between two levels of the spectrum of Hat 
are relevant one can project the operator (5) onto the subspace spanned 
by the eigenfunctions ~a(r) and ~Ob(r) corresponding to these levels. (13) 
When considering atoms or molecules without intrinsic polarization, the 
Hamiltonian (1) is recovered if one expresses the field E in terms of its 
normal modes Ati, Ai and assumes the rotating wave approximation 
(RWA). (3'4'11'12) Then the coefficients gt are proportional to /~ '~ i ,  where ~i 
is the polarization vector of the ith mode, and 

= e f dr ~b~(r) r~k*(r) (6) 

However, the wave functions Oa(r) and ~/b(r) are deformed by the 
forces that act on the atom when it is out of its equilibrium position due to 
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thermal vibrations. Thus, the mechanism of this deformation is a random 
Stark effect and it results in fluctuations in the frequency co o between the 
levels and also in the matrix element /~. These fluctuations have been 
previously modeled as a white noise in order to explain the difference 
between the decay times of the level populations and the off-diagonal 
elements of the density matrix, (13) but the effects of the fluctuations in the 
coupling constants gj are still unexplored. 

A complete study of this problem should be carried out considering 
simultaneously the random shift in the frequency COo, the intrinsic dipole of 
each level that results in cubic terms in the Hamiltonian, feedback terms 
due to the influence of the motion of the electron on the nucleus, and the 
fully coupled Hamiltonian without making the RWA. However, it seems 
likely that the novelties appearing with the modification (3) in (1) will 
essentially remain in the complete treatment. Our aim in this paper is to 
stress the theoretical interest of the problem and to discuss the use of 
different techniques in order to solve it. 

On the other hand, one could argue that this situation can be modeled 
with two reservoirs: the radiation and the vibration field of the lattice. This 
will lead to transitions due to absorption and emission of either photons or 
phonons, but not to the main effect which is modeled by the noise, i.e., the 
fluctuations in the polarizability, since this effect can be taken into account 
only using the electronic wave functions. In this sense our approach goes 
beyond the two-level approximation. 

Another possible interesting application is considered in refs. 5 and 7, 
where it is proved that a system tunneling between two wells in the presence 
of a dissipative environment can be described by a two-level system linearly 
coupled to an oscillator ensemble, and such that the coupling coefficient is 
proportional to the distance between the wells of the potential. Then it 
is easy to conceive situations in which this distance fluctuates and these 
fluctuations could again be modeled by adding stochastic terms to the 
coupling parameters. However, in this situation the difference between the 
full Hamiltonian and its RWA version is important (5"14) and the former 
should be used in the analysis. 

There are some precedents for our model that are worth mentioning. 
Mencia Bravo e t  al. ~5) dealt with a related problem: a classical system in 
a heat bath with an additive external noise. In the quantum case, Faid and 
Fox (16) proposed a stochastic coupling between a system and a heat bath 
as a phenomenological mechanism of relaxation for the bath. However, they 
set the statistical properties of the coupling terms as a whole, preventing 
nonconservative transitions. We here consider the noises and the bath as 
independent objects, and obtain as a result nonconservative transitions. 

Two techniques are presented in this paper. The first is the quantum 
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master equation (QME). (6'7) This is an equation for the density matrix of 
the system averaged over the bath variables, and is used in order to 
calculate the transition probabilities between energy levels of the system. 
These are the coefficients of the master equation for the level population, 
i.e., the diagonal part of the density matrix. In this approach, carried out 
in Section 2, one can obtain the stationary level populations, and the devia- 
tions from the deterministic case (thermalization) are discussed. The second 
one, the Langevin approach, is considered in Section 3, presenting equa- 
tions for the first moment of a and a t that go beyond the approximations 
yielding the QME. The possibility of going beyond the first moment is also 
examined. 

The stochastic terms are treated in Sections 2 and 3 using what we call 
the quantum best Fokker-Plank. equation (QBFPE). ~17) This equation is 
obtained by averaging the quantum evolution equations over the realiza- 
tions of the noises, and may be found either using cummulant techniques ~4) 
or in the context of the best Fokker-Plank approximation for stochastic 
equations perturbed by colored noise, t18) 

2. Q U A N T U M  M A S T E R  EQUATION 

Our purpose in this section is to obtain an evolution equation for the 
density matrix averaged over the noises, and by a standard projection 
technique (6'7/ to eliminate the bath variables. The derivation of such an 
equation can be carried out by using cumulant expansions (a) or by a 
suitable extension of functional derivative techniques related to the "best 
Fokker-Planck approximation ''(17) for colored-noise-perturbed systems. 
Following this latter technique, we start with a general quantum system 
with stochastic Hamiltonian 

H(t) = H o + ~ ~k(t) Hk (7) 
k 

where H i a r e  self-adjoint operators and #k(t)  real Gaussian noises with zero 
mean and correlation given by 

<~k(t) ~k,(t')) = Fgk,(t- t') (8) 

The evolution equation for the operators At in the Heisenberg picture, 
after averaging over the noises, can be found to be 

<-4t> = i<[Ho, A ] , ) - ~  <[Dk(t ), [Hk, A]] t> (9) 
k 
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where the subscript t denotes the (stochastic) evolution in the Heisenberg 
picture and ( - )  is the average over the noises. The operators Dk(t) depend 
on H(t) in such a way that unless the noises are delta correlated, these are 
stochastic operators. (17) The approximation which yields the so-called best 
Fokker-Planck equation (BFPE) in the classical case replaces the exact 
Dk(t) by deterministic expressions. This approximation is valid for weak 
noises and short correlation times and its range of validity has been subject 
of a number of studies. (19) In the quantum case the approximated Dk(t) 
reads 

Dk(t)= ~ fo' ds Fkk.(S ) e-~S~I~ '*m (10) 

With this approximation it is possible to find a density matrix p, such that 
it represents the actual state of the system in the sense that, if Po is the 
initial state, then 

Tr[ptA] = Tr[po<A,) ] (11) 

This state reproduces all the mean values for a given time, since A is 
an arbitrary observable. The only information which is lost with this treat- 
ment is that of time correlations, i.e., mean values of pairs of observables 
measured at two different times. Deriving (11) and introducing (9) in it, we 
finally obtain the evolution equation for p,, referred to as the quantum 
BFPE (QBFPE), 

h, = - i [Ho,  p,] -Y~ Imp, [D~(t), p,]] 
k 

(12) 

with Dk(t) given by (10). 
We will apply the above formalism to the Hamiltonian (1) with the 

interaction term given by (3). Although the noises in (3) are complex, one 
can reduce this problem to one with real noises by just splitting ~i(t) into 
real and imaginary parts. 

Once set the Hamiltonian, it is straightforward to obtain the QBFPE 
for the density matrix p,, which reads 

N 

fit-- -i[Ho, P,] -e2 ~ {[V~, [D,(t), p , ] ]  + [V~, [Di(/) i', P t ] ] }  
i = I  

(13) 

where Vi=Atia and 

De(t)= dse-i~I~ Vj+ Fij(s) Vf]e ira" 
j = l  

(14) 

822/71/5-6-21 
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The parameter e is considered to be small, in such a way that the 
motion induced by the coupling is much slower than the motion of the 
isolated system or the bath. Thus, we can perform an expansion on e which 
is equivalent to an adiabatic elimination of the bath variables in the inter- 
action picture. (6,v) As usual, we average over the bath variables in order to 
get an equation for the reduced density matrix. We define the projectors 

P p = p ( T ) |  Q = I - P  (15) 

where Tr~ is the trace over the bath variables, p(T) is the Gibbs equi- 
librium state of the bath at a temperature T, and 

vt = PPt, w, = QPt (16) 

Applying these projectors to (13), we obtain the evolution equations for 
vt and w t. If one assumes the bath and the system to be uncorrelated and 
the former in thermal equilibrium at the initial time, i.e., p o = p ( T ) |  
then it is found, after eliminating w ,  that v, satisfies, up to second order 
in e, the evolution equation 

N 

= -- i[Hs,  v,] - 282 Re P ~ i- ds(lgi[ 2 + Fii(s)) ei(~~176176 [V'i, v,]] 
i=1 .,o (17) 

where we have used the notation Re A = �89 + A*). Since we have assumed 
a thermal bath with noninteracting oscillators, the correlation among the 
different noises, Fo.(t ) with i r  does not affect the final result. Hereafter 
we suppose the noises to be uncorrelated, 

F~j(s) = 6,jFi(s) (18) 

Finally, if TrB(p(T) A~Ai) = ni(T) is the mean number of quanta with 
energy ~o~, we can find for ti t = TrBp, the quantum master equation (QME) 

= -- i(~ + A~ ata, tit] + �89 + 1 )[atitar - ar t - titata] 

+ 1KN[2a*tita - aa~ti t-  titaa ~ ] (19) 

where 
N oo 

3c~176 ~ fo ds(lgil2 + Fi(s))ei(~~176176 
i = 1  

N oo 

K = 2 e 2 R e  ~ fo ds(lgi[2 + F~(s))e~(~~176 (20) 
i = l  

N oo 

KKr=2~2Re ~ n~(T) fo ds(lg~12 + F~(s))e ~(~176 
i = 1  
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][n the latter expressions we have made t --, ~ in the upper limits of the 
integrals, which is the result for adiabatic elimination. The replacement is 
justified in the noise terms assuming t large enough to lie out of the sup- 
port of F(s). Thus, the form of the QME (19) is the same as those derived 
in the absence of noises but with different expressions for the frequency 
shift A~o o and the factors K and N. These differences may have important 
physical consequences. In our case we will consider the process of emission 
and absorption of a photon or phonon. From (19) we can calculate the 
transition rates, which are the coefficients of the master equation for the 
level populations P ,  = (n ]t~,l n) ,  and are obtained taking the expectation 
value of (19) on the eigenvectors of Hs: 

wem(n)=nK(N+ 1) 
(21) 

wab(n) = (n + 1) KN 

If [[&12+Fjj(s)] does not depend on s, the dominant transitions are 
those that conserve the energy. The standard treatment is to consider large 
times and a continuous set of possible final states, which can be thought of 
as a thermodynamic limit in the bath variables. Then one obtains the 
Fermi golden rule, which gives constant transition rates. Formally, the 
Fermi golden rule can be derived from (20) and (21) by taking t ~ ~ and 
replacing the sum by an integral over ~o with a state density D(~o), i.e., 

f? Wem=2e2nsRe &o D(o))[n(co)+ l]  

fo x dse ~ ~~176 I g(o))l 2 + T(e), s)] 

(22) 

2 Wab = 2e2(ns + 1 ) Re de) D(co) n(co) 

2 x ds e i(~ ~176 + F(~o, s)] 

Let us split the deterministic and stochastic contributions to the rates, 

~A~(det) --I- Au~  
W e m ~  "~em - - ~ " e r n  

(23) 
u~(det) _t. A~A, 

Wab  w~" ' ~ a b  ~ ~ V a b  

The deterministic part is given by the Fermi golden rule, 

(,t~t) = 2rce2nsD(ogo)[n(o%) + 1 ] [ g(COo)l 2 Were 
(24) 

w(d~t) = 27re2(ns + 1 ) D(m0) n (O~o) I g(mo)l 2 ab 
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while the stochastic part is 

i 
o o  

Z1Wem=~2ns d09D(09)[n(co)+ 1] F(09, 090-09) 
- - o o  

AWab=e2(ns+ l) d09 D(09)n(09)F(09,09o-09 ) 
- - o 0  

(25) 

where ~(09, 12) is the Fourier transform of the correlation function 

i 
oz~ 

F(og,/2) = ds e-ia~V(09, s) 
oO 

and we have applied that F*( t )=Fj i ( - t ) ,  which is clear from the 
definition (4). 

One can see that only the number of excitations and coupling constants 
of the resonant mode are involved in the deterministic contribution. On the 
contrary, the stochastic part can introduce a dependence on the other modes. 
For example, if the noise spectra are peaked around a frequency /2,o, 
then the modes with frequencies close to co o - / 2 , 0  will contribute to the 
transition rates. This is a remarkable effect of the external fluctuations, 
which permit absorption and emission of excitations corresponding to non- 
resonant modes. If the correlations are real, then the Fourier transform is 
an even function in /2  and the absorption spectrum will have one peak in 
090 due to the deterministic part and two smaller peaks in 090-t---/2,0 due to 
the stochastic term ZlWem. 

To end this section we stress that the QME also gives the frequency 
shift, i.e., the increment on the free frequency 090 due to the presence of 
the bath. The stochastic forces produce new terms in the frequency shift. 
This stochastic correction A09(0 "~ can be written in terms of the Fourier 
transform of F(09, t), taking the limit of a continuous set of modes, 

i•o i ~ r'(09,/2) (26) A09(onO) = g2 d09 D(09) PV - ~  d/2/2 + co - 09 0 

where PV means the principal value of the integral over/2. 

3. L A N G E V I N  A P P R O A C H  

The starting point of the Langevin approach (3'4'7'11-13) are the 
Heisenberg equations for the operators a, a*, Ai, and A~ and it consists in 
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the elimination of the bath variables A;, A~* yielding a closed equation for 
a and a t, which reads, for the deterministic Hamiltonian (1) with (2), 

;o = -icooa- ds r s) a(s) + F(t) (27) 

with the dissipation kernel 

N 

~b(t)= ~ Igkl2e -i~k' (28) 
k = l  

and the Langevin force, which is an operator, 

N 

F(t)=i ~ gkAke -i~~ (29) 
k = l  

If one tries to generalize this procedure to the stochastic case, one 
finds a stochastic dissipation kernel. Then we have, acting on the system 
observables, two sources of fluctuations, one due to the bath, which is also 
present in the deterministic case, and the other due to the external noises. 
The resulting Langevin equation contains terms with the square of a 
Gaussian noise, and then it is no longer possible to apply the simple 
standard theory of quantum stochastic equations. To keep the calculations 
simple enough, in this work we choose to generalize as much as possible 
the results of the quantum Langevin equation to the stochastic case, and 
not to try the methods existing in the literature to treat nonlinear Gaussian 
noises. (20) 

Using (9), we can write exact equations for the average of any observ- 
able of the whole system over all the realizations of the noises. We call this 
average (A,)no. One can reproduce the derivation of the quantum 
Langevin equation, eliminating the bath variables and obtaining stochastic 
equations for (a,)no and ( a t t ~ n o  . The stochasticity in these equations 
comes from the presence of the bath. Then one can use these equations to 
calculate the different moments of the stochastic operators (at)no and 
(a~)~o, i.e., the averages * ~ m ((at)no (a , )no) ,  where ( . )  means the average 
over the initial condition of the bath. But these are not useful quantities. 
For example, the mean value of the energy will be given by ((attar)no) and 
the commutation relation which is preserved under the evolution is 
(([at, a~])no) = 1. 

Thus, the meaningful averages are only those carried out over the 
initial conditions of the bath and over the realizations of the noises 
simultaneously. We will derive the Langevin equation for (at)nn, but this 
will be useful only to calculate the mean value of at and then it will give 
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information only about the dissipation, but the stochastic force appearing 
in the equation will not have any physical meaning. Then we are forced to 
repeat the calculation for (atta,)no, obtaining the equation for the mean 
value of the energy, but this can be done in closed form only under the 
strong assumption that the interaction term is purely random, i.e., that 
gk = 0, and will not be considered here. 

In the equation for the mean value of a t we can use the exact version 
(9), i.e., an equation containing a memory term due to the finite correlation 
time of the noises. This equation reads, for the same Hamiltonian of (9), 

(A,) =i([H o, A],> - ~  ([Ge(t), [Hk, A],]> 
k 

(30) 

where 

Gk(t) =~. i~ ds I ' j e ( t - s )  Hj(s  ) (31) 
J 

The BFPA carried out in Section 3 replaces Hi(s)  by the free evolution, the 
evolution without any interaction term. Here it is possible to preserve some 
of the memory effects on the system variables, but not in the bath variables. 
We will make use of the following approximations for times in which the 
integrand of (31) is appreciable, i.e., for I t -  s[ < vc, % being the maximum 
of the correlation times of the noises: 

and 

Vj(s) ~- e -i~ ~)A] ( t) a(s) 

[a(s), A~ (t)] = 0 

[a(s), a(t)] "-~ 0 

[a(s), a*(t)] "~ e i~176 

(32) 

With these approximations and assuming Fjk(t)=6jkF~(t) ,  one has, 
dropping out the brackets and the subscripts, 

;/ dr(t) = --ia~oa(t)--i  ~ g ~ A k ( t ) - - ~  ds Fk ( t - - s )  
k 

• e i~ (33) 

Jk( t )  = --ir -- igka(t) -- Ok(t) Ak(t)  (34) 
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where 

;o f2g(t) = ds Fk(s) e i(o~o-o~k)s (35) 

Eliminating the bath variables Ak(t),  one has finally 

ti(t) = -io9oa(t  ) - ds Os(t, s) a(s) + ~ ( t )  (36) 

with the dissipation kernel 

cb(t, s ) = ~  {exp[--i~Ok(t--  S) ] } trk(t--  s) +.lgkl 2 
k k 

and the fluctuating force 

~-( t )  = - i  ~ g*Ak(O) exp(--iookt) exp -- f2k(t' ) dt' (38) 
k 

For large enough times t,s>>z c the dissipation kernel becomes 
stationary, i.e., depending only on the difference ~(t, s )=  ~ ( t -  s), where 

~( t )  = ~ e-i'~kt[Fk(t) + Igkj 2 e -'~k] (39) 
k 

with 

has 

O k= lira Ok(t) 
t ~ o o  

Finally, taking the average over the initial condition of the bath, one 

( gl(t) ) = - i roo(  a(t ) )  -- Jo ds qb(t - s ) (a ( s )  ) (40) 

It is interesting to note that the QME yields an equation for the first 
moment which is obtained from (40) retaining only the second-order terms 
in gk and Fk(t  ). This is equivalent to making in (40) the approximations 

f2k __- 0 

(a ( s )  ) ~- eiC~176 ) 



1168 Man~s e t  al.  

In (40) one can see that the deterministic coupling, i.e., the coefficients 
gk, enters in the equation with the exponential of - tOk.  Then, this effect 
is only important in a time scale given by ~ 1 ,  which is very large for 
weak noises. What is an interesting novelty is that the time scale of the 
dissipation kernel can be reduced by the presence of the noises if these are 
strong enough. In that case, the relevant time is no longer the inverse of the 
bandwidth, but the correlation time of the noises Vc and the time Ok-1. This 
effect is lost in the QME, where the deterministic and stochastic terms 
appeared in the same way. The exponential factor that now arises in the 
deterministic term comes from the effect of the noise on the evolution of the 
bath variables. Without noises these variables are affected by the motion of 
the system and the dissipation is given by the feedback of this action. In the 
presence of strong noises the interaction between the system and the bath 
is random and a dissipation due to this randomness is created both on the 
system and on the bath, and this causes the vanishing of the effect of the 
bath on the system. 

4. CONCLUSIONS 

A comprehensive study of the problem of stochastic interaction 
between a one-degree-of-freedom system (two-level system or harmonic 
oscillator) and a Bose field has been presented. Two standard approaches 
for the deterministic problem have been extended in order to include the 
stochastic effects. In that case nonconservative transitions yielding non- 
thermal stationary states are allowed. In the simpler white noise case the 
transitions can be done by means of absorption or emission of a photon or 
phonon of any frequency, while if the noises are colored, there are peaks 
around ~0 given by the spectra of the noises. There is also an extra shift 
in the frequency co o that vanishes in the white noise case. These results are 
obtained using the QME. 

The extension of the Langevin approach has been carried out only for 
the first moment of the relevant variables. Nevertheless it has provided an 
important effect not captured with the QME, since it is possible to obtain 
that the deterministic dissipation kernel is decreased by the presence of the 
noises. 
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